Abstract

Recent environmental legislation, such as the European Union Directive on End-of-Life Vehicles and the Japanese Home Electric Appliances Recycling law, has had a major influence on product design from both an engineering and an economic perspective. This article presents a methodology for studying the effects of automobile fuel efficiency and emission policies on the long-term design decisions of profit-seeking automobile producers competing in an oligopoly market. Mathematical models of engineering performance, consumer demand, and manufacturing costs are developed for a specific market segment, and game theory is utilized to simulate competition among firms to predict design choices of producers at market equilibrium. Several policy scenarios are evaluated for the small car market, including corporate average fuel economy (CAFE) standards, carbon dioxide CO2 emissions taxes, and diesel technology quotas. The results indicate that leveraging CO2 taxes on producers for expected life cycle emissions yields diminishing returns on fuel efficiency improvement per regulatory dollar as the taxes increase, while CAFE standards achieve higher average fuel efficiency per regulatory dollar. Results also indicate that increasing penalties for violation of CAFE standards can result in lower cost to producers and consumers because of the effects of competition, and penalties based on fuel economy or emissions alone may not be sufficient incentive for producers to bring more costly alternative fuel vehicles into the market. The ability to compare regulations and achieve realistic trends suggests that including engineering design and performance considerations in policy analysis can yield useful predictive insight into the impact of government regulations on industry, consumers, and the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.