Abstract
This paper proposes an adaptive impedance control method for a robot's end-effector while it slides steadily on an arbitrarily inclined panel; it concentrates on robot force position tracking control for the inclined plane with an unknown normal direction and varying environmental damping and stiffness. The proposed control strategy uses the Recursive Least Squares (RLS) algorithm to estimate environmental damping and stiffness parameters during the impact-contact process between the robot and the environment. It achieves the expected posture adjustment of the robot's end-effector based on the measured contact torques and, during the robot's end-effector's sliding on the inclined plane, a fuzzy control is developed to adjust the robot impedance model parameters on-line and adaptively for changes in environmental damping and stiffness. The designed robot force position control method is robust to the changes of the environmental parameters but the implementation of the proposed control algorithms is simple. Finally, experiments demonstrate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.