Abstract

An analysis of the confidence of flow solutions for stochastically generated hard rock formations study was carried out with the aid of a simplified synthetic model. The formation was conceptualized as a fracture network with a known geometric structure intersecting an impervious mass rock while fracture permeability was considered a stochastic process. Safety analysis of radioactive waste repositories includes prediction of travel times of possibly contaminated water particles from the repository to the biosphere. While such calculations require that rock properties, such as permeability, be known over the entire flow domain, only limited information is available in practice, and interpolation methods are called for. An a priori model was constructed as a first step, with fracture permeabilities generated according to a given probability distribution; this a priori model was considered the ''true'' formation. In a second step, a limited amount of information, similar to that obtained in reality from boreholes, was used to construct a conditioned-by-measurement model. Identical flow tests were performed on formations represented by the two models, and the flow rate ratios resulting from these tests served as the measure of confidence of the stochastically generated formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.