Abstract

Femtosecond (fs) laser ablation has been recognized as an effective and promising technique for high-precision processing of natural and synthesized diamond. In this work, a study of femtosecond laser polishing for nanopolycrystalline diamond (NCD) films by chemical vapor deposition (CVD) is reported. The laser irradiation is induced by 200-fs laser pulses with a repetition frequency of 50[Formula: see text]MHz, and various laser fluences are employed to investigate their polishing effectiveness. The results show that the optimal laser fluence is 0.7[Formula: see text]J/cm2, at which the nanodiamond grains on top of the cauliflower-like clusters of NCD films can be ablated. With such laser fluence, the mean surface roughness of NCD films reduces from 73.84[Formula: see text]nm to 31.88[Formula: see text]nm, which presents a 57% reduction. Nevertheless, when the laser fluence rises beyond 0.7[Formula: see text]J/cm2, large amount of amorphous carbon (a-C) balls and porous lava-like morphology would come into being, resulting in severe degradation of the NCD surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.