Abstract
Coronary Heart Disease (CHD) is a condition in which the heart's blood supply is blocked or disrupted by fat in the coronary arteries. This disease is the most significant cause of death in Indonesia. CHD can be detected based on the Heart Rate Variability (HRV) index of the Photophletysmograph (PPG) signal taken from a smartphone's camera. However, the use of PPG from smartphone to detect CHD is still rare in real-world applications. Moreover, studies on CHD detection based on PPG signal are also difficult to be found in the scientific literature. Currently, the Electrocardiogram (ECG) signal still dominates as a signal for detecting CHD. This research fills this research gap by proposing a study on the feature selection of PPG signal to detect CHD. There are three feature selection methods studied in this research, i.e., Analysis of Variance (Anova), Pearson Correlation, and Recursive Feature Elimination (RFE). Furthermore, a classification algorithm, called as K-Nearest Neighbors, has also been chosen to create a machine learning model based on the PPG features. The experimental results show that the Pearson Correlation feature selection method produces better CHD detection performance compared to the other two algorithms (Anova and RFE). CHD detection performance using the Pearson Correlation produces an accuracy of 90.9%, sensitivity of 75%, and specificity of 100%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Building of Informatics, Technology and Science (BITS)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.