Abstract
Recently, dental implants (DIs) are extensively utilized on edentulous patients. The bio-compatibility & physical properties of DIs are severely specified since it belongs to the products of biomedicine. Generally, DIs must pass a series of tests before they are approved to use in human body. In this paper, a method of probabilistic fatigue-life estimation was proposed to fulfill reliability life prediction of DIs. The probabilistic form of fatigue-life evaluation is developed based on material constants namely fatigue strength coefficient and fatigue strength exponent. The procedure is developed based on the shift of the fatigue-life curve to the desired value of the probability of occurrence. This estimation model yields the life distribution in respect of the scatter of the cyclic properties of DIs. The CAD models of DIs are first constructed to perform computer simulation analysis for establishing the fracture spots. The stress analysis and life estimation were carried out by ANSYS software. The simulation results are further compared with the experimental data obtained by fatigue testing to determine the estimated model of fatigue life. The parameters of the model were determined by linear regression method based on the combination of the simulated and experimental data. The reliabilities of DIs were further investigated to provide an index of life-safety of DI at different cyclic loads. The analyzed results may be useful while programming the fatigue testing of DIs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.