Abstract

This communication reports an electrical magnetoconductivity fluctuation study in polycrystalline (granular) samples of YBa <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> Cu <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2.985</sub> Fe <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.015</sub> O <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$_{\mathrm {7-\delta}}$ </tex-math></inline-formula> and YBa <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1.75</sub> Sr <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.25</sub> Cu <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> O <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$_{\mathrm {7-\delta }}$ </tex-math></inline-formula> superconductors. The measurements were performed in magnetic fields <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$H \le1000$ </tex-math></inline-formula> Oe applied parallel to the measurement density current. The samples were prepared by a standard solid-state reaction technique. The results were analyzed in terms of the temperature derivative of the electrical resistivity, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$d\rho $ </tex-math></inline-formula> <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">/dT</i> , and of the inverse of the logarithmic derivative of the electrical conductivity with respect to temperature, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\chi _{\sigma }^{-1}(T)$ </tex-math></inline-formula> . The results allowed the identification of power law divergences of the magnetoconductivity and show that the superconductivity transition in our samples is a two-stage process. The genuine superconductor state with zero resistance stabilizes at the coherence transition temperature, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$T_{\mathrm {C0}}$ </tex-math></inline-formula> , in which a long-range-ordered state for the phase of the order parameter is established in the whole granular array. The approach to the zero-resistance state is characterized by the critical exponent <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\lambda \sim ~3.5$ </tex-math></inline-formula> for our Sr doped sample and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\lambda \sim ~4$ </tex-math></inline-formula> for our Fe doped sample. It indicates that the universality class for the coherence transition for our samples is that of the 3-D XY model where non-trivial disorder is relevant. At a temperature called <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$T_{\mathrm {C}}^{\mathrm {IN}}$ </tex-math></inline-formula> ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$T_{\mathrm {C}}^{\mathrm {IN}} &gt; T_{\mathrm {C0}}$ </tex-math></inline-formula> ), we observed another exponent, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\lambda ^{\mathrm {IN}} ~ \sim ~1.4$ </tex-math></inline-formula> , which suggests a crossover in the critical phenomenology dynamic nearby the coherence transition. The origin of this crossover may be related to a change in the universality class of the transition and the value of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\lambda ^{\mathrm {IN}}$ </tex-math></inline-formula> is consistent with a true asymptotic inverted XY critical regime. The chemical doping generally enhances the YBa <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> Cu <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> O <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$_{\mathrm {7-\delta }}$ </tex-math></inline-formula> superconductor granular character; however, its physical contribution to the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\lambda ^{\mathrm {IN}}$ </tex-math></inline-formula> exponent is an open question.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call