Abstract
We have developed an advanced undergraduate experiment to explore electric dipole radiation in the optical frequency domain. A polarized laser beam is used to illuminate an aqueous suspension of skim milk, and the light scattered from the suspension is measured in the plane perpendicular to the laser beam as a function of the angle θ with respect to the polarization direction and as a function of the perpendicular distance R from the laser beam. When the length of the scattering region, d, is much smaller than R, the measurements agree very well with the sin2 θ/R2 dependence of electric dipole radiation. Increasing the scatterer concentration increases the background of multiply scattered light and decreases the degree of polarization of the scattered light with no appreciable change in the observed sin2 θ/R2 dependence. We discuss variations of the experiment for different instructional needs and describe how an understanding of dipole radiation helps students to appreciate a number of optical phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.