Abstract

Equations of geometrically nonlinear theory of elasticity with finite displacements and strains are analyzed. The equations are composed using three versions of physical relations and applied to solve the problem of tension-compression of a straight bar. It is shown that the use of the classical relations between the components of the stress tensor and the Cauchy-Green strain tensor in the problem of compression of the bar results in the appearance of “spurious” static loss of stability such that the bar axis remains straight if the stresses are referred to unit areas before the deformation (conditional stresses). However, in the problem of tension, the classical relations do not permit one to describe the phenomenon of static instability (neck formation as the plastic instability occurs). These drawbacks disappear if one uses the third version of the physical equations, composed as relations between the true stresses referred to unit areas of the deformed faces on which they act and the true elongations and shears. The relations of the third version are most correct; they permit one to pass to self-consistent equations of elasticity and plasticity under small strains and finite displacements, and they should be recommended for practical use. As an example, such relations are composed for the flow theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.