Abstract

Sulfur in hydrogen combustion reaction chemistry, which plays an important role in meteorology, combustion reactions, and atmospheric pollution, has been extensively investigated recently. And its reverse reaction has also been a research object gradually. The research in this paper is based on the exact potential energy surface (L S J, Zhang P Y, Han K L, He G Z 2012 J. Chem. Phys. 136 094308), with using the method of quasi-classical trajectory on the exchange reaction of H (D)+SH/SD dynamic properties. In this paper, the scalar properties are calculated, including the cross section, rate constant, opacity function, product vibrational, rotational distributions, product scattering direction, rotational angular momentum orientation, and alignment properties. In this paper, how the collision energy and the isotope affect the reaction H (D)+SH/SD kinetic properties is analyzed in detail. The results show that as collision energy increases, the reaction cross section increases, product backscatter weakens gradually while the product rotational angular momentum alignment and orientation nature strengthen gradually. In addition, the isotope effect has a significant influence on the reaction kinetics. The reaction mechanism which is shown in the title and based on the reaction kinetics and the potential energy surface, is also discussed in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.