Abstract

A novel method is proposed to realize compact, high-performance optical buffering application based on the polymer-infiltrated photonic crystal waveguide. By adjusting the radii of the first two rows of holes adjacent to the defect, the negligible dispersion bandwidth ranging from 2.8 nm to 13.8 nm and the corresponding constant group velocity are obtained, which are suitable for the requirement of optical buffers. Then the buffer capability and dynamic modulation of dispersion engineering waveguide are systemically studied. The simulation shows that the center wavelength shift, delay time and storage capacity increase almost linearly as the applied voltage increases. And the modulation sensitivities are about 0.386 nm/V, 0.8 ps/V and 0.37 bit/V, respectively. These results show that the proposed structure has considerable potential for optical buffering application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.