Abstract

The objective of this study was to investigate various factors that influence doxorubicin (Dox) loading onto and release from sulfopropyl dextran ion-exchange microspheres (MS), and to evaluate the anticancer activity of the released drug in vitro. Dox was incorporated into the MS by incubating the MS with aqueous solutions of Dox at room temperature. The drug release was carried out at 37°C in aqueous solutions containing NaCl with or without CaCl 2. The kinetics of drug absorption and release, the amount of Dox released, and the stability of Dox after loading, freeze-drying, and release were determined by spectrophotometry. The cytotoxicity of Dox (the original drug or that released from MS) against murine EMT6 breast cancer cells was assessed using a clonogenic assay. An increase in the MS to drug ratio resulted in a higher absorption rate and a higher fraction of the drug extracted from the solution. The release rate and the equilibrium fraction of Dox released increased with a decrease in the initial amount of Dox loaded or an increase in the salt concentration. The addition of divalent ions (Ca 2+) promoted drug release compared to NaCl alone. The percent loss of colony forming ability of the cells, a measure of cytoxicity of the released Dox, was the same as parent Dox solutions, indicating that the drug bioactivity was fully preserved after the drug loading and release cycle. This work demonstrated that various drug release rates were achieved by varying the drug loading and that the MS-delivered Dox was effective against the cancer cells in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.