Abstract

When air oxidized, partially inactivated rhodanese (EC 2.8.1.1) is treated with dithiothreitol (DTT) to regenerate the reduced essential sulfhydryl group there is an initial reactivation followed by an anomalous slower inactivation. Fully active enzyme shows only inactivation. The inactivated enzyme may be completely reactivated on long incubation with the substrate thiosulfate ion. None of the normal potentialities of DTT appear to be responsible for the inactivation. The results are interpreted in terms of disulfide formation between DTT and an essential enzymic sulfhydryl group with the resulting complex being stabilized by secondary interactions which are particularly favorable due to similarities between DTT and lipoic acid--a normal sulfur acceptor substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.