Abstract

In the general scheme of gravity field modelling long-, medium- and short-wavelength constituents of the gravity field derived from e.g. geopotential model, terrestrial data and digital terrain model respectively, are routinely combined. In this study, spectral characteristics of terrestrial data sets are investigated. The estimation of spectral sensitivity of gravity related quantities such as gravity anomaly, vertical deflections and gravity gradients was accomplished through Fourier PSD and covariance analysis depending on the spatial distribution of data points. The information content of the estimated spectra were validated on global and local levels to access their further utilization. The spectra were compared to the 1D spectrum of the gravitational field derived from spherical harmonic coefficients using a high resolution global gravitational model as well as to an analytical approximation. Besides the frequency domain investigations the information content regarding the different wavelength structure comprised in terrestrial and EGM2008 model is investigated in the space domain based on covariance analysis. As a combined validation process the gravity degree variances were transformed to the necessary auto- and cross covariance functions to predict geoid height from gravity anomaly, which ensures an independent validation process of the computed spectrum. Based on the spectral characteristics of terrestrial measurement spectral weights for spectral combination were derived involving global gravity field model, gravity and gravity gradient data in gravity field modelling. To determine the geoid in the whole spectral band the specific integral kernels in the spectral domain should be modified using the suggested spectral weights.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.