Abstract
Phosphorus grain boundary segregation in an interstitial free (IF) steel deformed at different temperatures and strain rates is measured by virtue of Auger electron spectroscopy (AES). The results reveal that the deformation-induced phosphorus grain boundary segregation has a non-equilibrium characteristic and increases with increasing deformation strain until reaching a steady value. In addition, the segregation of phosphorus increases more apparently for the specimen deformed at a lower temperature or a higher strain rate. Predictions with a kinetic model developed recently show a reasonable fit between the predictions and the observations, which indicates that the model is effective in the prediction of deformation-induced grain boundary segregation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.