Abstract
Experimental and numerical studies were conducted on AlSi12 alloy fabricated by wire-feed electron beam additive manufacturing to examine the structure, thermomechanical behavior and fracture of a eutectic microvolume at the scale of several microns. Dynamic boundary value problems were solved under plane strain conditions. The composite structure of the eutectic phase consisting of an aluminum matrix and silicon particles was taken into account explicitly in the calculations. Isotropic models of the thermoelastoplastic matrix and elastic-brittle particles were implemented in ABAQUS/Explicit. Composite deformation was calculated both with and without allowance for residual stresses caused by cooling of the composite after its fabrication. It was shown that after the cooling of the eutectic, silicon particles are compressed, and the aluminum matrix is under both bulk compressive and tensile as well as under pure shear stresses. It was found that residual stresses play a negative role at the stages of intense deformation of the composite. The fracture strain of the eutectic strongly depends on the yield point of the matrix, while the ultimate fracture stress varies but only slightly. Favorable morphology of silicon particles was determined which prevents early fracture of the eutectic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.