Abstract
The aim of the author profiling task is to automatically predict various traits of an author (e.g. age, gender, etc.) from written text. The problem of author profiling has been mainly treated as a supervised text classification task. Initially, traditional machine learning algorithms were used by the researchers to address the problem of author profiling. However, in recent years, deep learning has emerged as a state-of-the-art method for a range of classification problems related to image, audio, video, and text. No previous study has carried out a detailed comparison of deep learning methods to identify which method(s) are most suitable for same-genre and cross-genre author profiling. To fulfill this gap, the main aim of this study is to carry out an in-depth and detailed comparison of state-of-the-art deep learning methods, i.e. CNN, Bi-LSTM, GRU, and CRNN along with proposed ensemble methods, on four PAN Author Profiling corpora. PAN 2015 corpus, PAN 2017 corpus and PAN 2018 Author Profiling corpus were used for same-genre author profiling whereas PAN 2016 Author Profiling corpus was used for cross-genre author profiling. Our extensive experimentation showed that for same-genre author profiling, our proposed ensemble methods produced best results for gender identification task whereas CNN model performed best for age identification task. For cross-genre author profiling, the GRU model outperformed all other approaches for both age and gender.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.