Abstract

In this paper, we have developed a new mathematical model describing bio-heat transfer during cryosurgery of lung cancer. The lung tissue cooled by a flat probe whose temperature decreases linearly with time. The freezing process occurs in three stages and the whole region is divided into solid, mushy and liquid region. The heat released in the mushy region is considered as discontinuous heat generation. The model is an initial-boundary value problem of the hyperbolic partial differential equation in stage 1 and moving boundary value problem of parabolic partial differential equations in stage 2 and 3. The method of the solution consists of four-step procedure as transformation of problem in dimensionless form, the problem of hyperbolic partial differential equation converted into ordinary matrix differential equation and the moving boundary problem of parabolic partial differential equations converted into moving boundary problem of ordinary matrix differential equations by using finite differences in space, transferring the problem into the generalized system of Sylvester equations by using Legendre wavelet Galerkin method and the solution of the generalized system of Sylvester equation are solved by using Bartels-Stewart algorithm of generalized inverse. The whole analysis is presented in dimensionless form. The effect of cryoprobe rate on temperature distribution and the effect of Stefan number on moving layer thickness is discussed in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call