Abstract

Complex macroporous poly(vinyl alcohol) (PVA) cryogels have been obtained by cryogenic treatment (freezing at–20°C for 12 h followed by defrosting at a rate of 0.03°C/min) of PVA–chitosan hydrochloride mixed solutions. The subsequent alkaline treatment of the cryogels has resulted in the transformation of the water-soluble salt form of chitosan into its insoluble basic form, which coagulates inside the bulk of the continuous phase of PVA cryogel into small particles with sizes of 2–5 µm. In the resulting composite cryogels, these particles play the role of an “active” filler, which increases the rigidity and heat endurance of the gel material. It has been shown that the sorption capacity of such chitosan particles entrapped into the bulk of composite cryogels with respect of bivalent copper ions is noticeably higher than the sorption capacity of ground chitosan particles incorporated as a discrete filler into the continuous phase PVA cryogels. The study of the properties of PVA–chitosan hydrochloride mixed solutions revealed that these polymers are, to a large extent, compatible with one another in a common solvent at a low ionic strength. Therefore, liquidliquid phase separation of these systems due to the thermodynamic incompatibility of macromolecules of different natures is observed only upon increasing the ionic strength by adding a low-molecular-mass salt (NaCl, 0.15 mol/L) to the solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.