Abstract

Satellite images of sea surface temperature (SST) show that the location of cross-shore SST minimum (LCSM) stretches along the isobaths in the Northwest Africa Upwelling System. To understand and interpret these observations better, we set up a two-dimensional analytical model that takes into account the surface and bottom Ekman transport and the alongshore geostrophic current, as well as bottom friction and variations in bottom topography. The structure of vertical velocity with a realistic topography clearly illustrates the variations of SST drop in a sample cross-shore section. Some idealized theoretical model experiments are carried out to examine the effects of eddy viscosity, Coriolis force, and cross-shore wind on the location of the cross-shore maximum upwelling intensity. The results show that the cross-shore wind largely impacts on the location where the coldest water outcrops to the surface through an adjustment of the cross-shore pressure gradient. This is also verified by the remotely sensed data, which indicate that the maximum correlation coefficient between cross-shore wind stress and the depth of LCSM is −0.65 with a lag of approximately 1 day.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.