Abstract
Electrically conductive adhesives (ECAs) are an environmentally friendly alternative to tin/lead (Sn/Pb) solders in electronics packaging applications. However, current conductive technology is still in its infancy and limitations do exist. One of the critical reliability issues is that contact resistance of silver flake-filled ECAs on nonnoble metals increases in elevated temperature and humidity environments. The main objective of this study is to investigate the contact resistance behaviors of a class of conductive adhesives, which are based on anhydride-cured epoxy systems. Curing profiles, moisture pickup, and shifts of contact resistance of the ECAs on a nonnoble metal, tin/lead (Sn/Pb), during aging are investigated. Also, two corrosion inhibitors are employed to stabilize the contact resistance. The effects of these corrosion inhibitors on contact resistance are compared. It is found that: (1) this class of ECAs shows low moisture absorption, (2) the contact resistance of the ECAs on Sn/Pb decreases first and then increases slowly during 85/spl deg/C/85% relative humidity (RH) aging, (3) one of corrosion inhibitors is very effective to stabilize contact resistance of these ECAs on Sn/Pb, and (4) the corrosion inhibitor stabilizes contact resistance through adsorption on Sn/Pb surfaces. From this study, it can be concluded that ECAs based on anhydride cured epoxy systems are promising formulations for electronics packaging applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Components and Packaging Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.