Abstract

We conducted a comprehensive study of copy number variants (CNVs) well-tagged by SNPs (r2≥0.8) by analyzing their effect on gene expression and their association with disease susceptibility and other complex human traits. We tested whether these CNVs were more likely to be functional than frequency-matched SNPs as trait-associated loci or as expression quantitative trait loci (eQTLs) influencing phenotype by altering gene regulation. Our study found that CNV–tagging SNPs are significantly enriched for cis eQTLs; furthermore, we observed that trait associations from the NHGRI catalog show an overrepresentation of SNPs tagging CNVs relative to frequency-matched SNPs. We found that these SNPs tagging CNVs are more likely to affect multiple expression traits than frequency-matched variants. Given these findings on the functional relevance of CNVs, we created an online resource of expression-associated CNVs (eCNVs) using the most comprehensive population-based map of CNVs to inform future studies of complex traits. Although previous studies of common CNVs that can be typed on existing platforms and/or interrogated by SNPs in genome-wide association studies concluded that such CNVs appear unlikely to have a major role in the genetic basis of several complex diseases examined, our findings indicate that it would be premature to dismiss the possibility that even common CNVs may contribute to complex phenotypes and at least some common diseases.

Highlights

  • Genome wide association studies (GWAS) have considerably advanced our knowledge of the genetics of complex traits, they fail to account for the bulk of the overall heritability [1]

  • A recent study of the genetics of 8 common diseases involving 16,000 cases and 3,000 controls failed to identify any novel copy number variants (CNVs) associated with disease and concluded that CNVs are unlikely to play a major role in their etiology

  • Studies we report here show that we must be careful not to dismiss the possibility that CNVs may underlie some of the observed associations with complex disease

Read more

Summary

Introduction

Genome wide association studies (GWAS) have considerably advanced our knowledge of the genetics of complex traits, they fail to account for the bulk of the overall heritability [1]. A 45 kb deletion polymorphism in NEGR1 has been shown to be the likely causal variant for the reproducible association with body mass index in humans, demonstrating a neuronal influence on body weight regulation [6]. These discoveries and similar developments suggest that the interpretation of known disease associations continues to be fraught with challenges, as CNVs may be in linkage disequilibrium (LD) with associated variants, and that the identification of causal variants requires an approach that considers both SNPs and CNVs at associated loci

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call