Abstract

AbstractThe evolution of mean relative humidity (RH) is studied in an isobaric system of clear and cloudy air mixed by an incompressible velocity field. A constant droplet radius assumption is employed that implies a simple dependence of the mixing time scale, τeddy, and the reaction (evaporation) time scale, τreact, on the specifics of the droplet size spectrum. A dilemma is found in the RH e-folding time, τefold, predicted by two common microphysical schemes: models that resolve supersaturation and ignore subgrid correlations, which gives τefold ∼ τreact, and PDF schemes that assume instantaneous evaporation and predict τefold ∼ τeddy. The resolution of this dilemma, Magnussen and Hjertager’s eddy dissipation concept (EDC) model τefold ∼ max(τeddy, τreact), is revealed in the results of 1D eddy diffusivity simulations and a new probability density function (PDF) approach to cloud mixing and evolution in which evaporation is explicitly resolved and the shape of the PDF is not specified a priori. The EDC model is shown to exactly solve the nonturbulent problem of spurious production of cloud-edge supersaturations described by Stevens et al. and produce good results in the more general turbulent case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call