Abstract

AbstractThe purpose of this paper is to study a chi-square-type distribution who degrees of freedom are geometric random variables in connection with weak limiting distributions of geometric random sums of squares of independent, standard normal distributed random variables. Some characteristics of chi-square-type random variables with geometrically distributed degrees of freedom including probability density function, probability distribution function, mean and variance are calculated. Some asymptotic behaviors of chi-square-type random variables with geometrically distributed degrees of freedom are also established via weak limit theorems for normalized geometric random sums of squares of independent, standard normal distributed random variables. The rates of convergence in desired weak limit theorems also estimated through Trotter’s distance. The received results are extensions and generalizations of several known results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.