Abstract
It was reported in the previous report that the propagation constant measuring system for long distance pipelines was produced based upon the distribution constant theory for the purpose of maintenance and management of long distance pipelines buried underground and to have a system to directly measure the propagation constants and characteristic impedance of the pipeline buried underground. This time, a simulator for the signal propagation of a pipeline, referring to these actual measurement values, was constructed and various signal modes were simulated. On the prediction of accidents where heavy-construction equipment, such as backhoe or boring machine, has contact with a pipeline and damages the coating of pipeline, the damage simulations with a backhoe and boring machine were performed and the fault resistances of these heavy-construction pieces of equipment at the time of accidents were identified. As a result, it was revealed that the fault resistance generated by the metal-to-metal contact caused by the boring machine, which damages pipeline the most, was approximately 20-50Ω when water was used, and that caused by the backhoe was approximately 100Ω. In order to verify the detectable property of this system, a simulation was performed to determine how each distributed constant changed when this degree of grounding faults occurred in the monitoring section of the pipeline, and validated it with an actual pipeline.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.