Abstract

Functional connectivity between brain regions during swallowing tasks is still not well understood. Understanding these complex interactions is of great interest from both a scientific and a clinical perspective. In this study, functional magnetic resonance imaging (fMRI) was utilized to study brain functional networks during voluntary saliva swallowing in twenty-two adult healthy subjects (all females, years of age). To construct these functional connections, we computed mean partial correlation matrices over ninety brain regions for each participant. Two regions were determined to be functionally connected if their correlation was above a certain threshold. These correlation matrices were then analyzed using graph-theoretical approaches. In particular, we considered several network measures for the whole brain and for swallowing-related brain regions. The results have shown that significant pairwise functional connections were, mostly, either local and intra-hemispheric or symmetrically inter-hemispheric. Furthermore, we showed that all human brain functional network, although varying in some degree, had typical small-world properties as compared to regular networks and random networks. These properties allow information transfer within the network at a relatively high efficiency. Swallowing-related brain regions also had higher values for some of the network measures in comparison to when these measures were calculated for the whole brain. The current results warrant further investigation of graph-theoretical approaches as a potential tool for understanding the neural basis of dysphagia.

Highlights

  • Dysphagia may arise from the entry of foreign matter into respiratory pathways [1]

  • This foreign matter will greatly increases the occurrence of severe respiratory problems among dysphagia patients

  • The path length L of the binary and weighted network were significantly shorter in the whole-brain metric compared to swallowing related regions when the threshold value was within the range of 0.60 to 0.85

Read more

Summary

Introduction

Dysphagia (swallowing difficulties) may arise from the entry of foreign matter into respiratory pathways [1]. Patients with swallowing difficulties are vulnerable to the entry of foreign matter into the respiratory tract. This foreign matter will greatly increases the occurrence of severe respiratory problems among dysphagia patients. The human brain is considered to be a large-scale robust and interactive biological system with non-trivial topological properties [3], such as hierarchy and small-world properties [4]. The human brain is considered to be one of the most complex networks found in nature. This biological system responds to external stimuli by transporting signals between specialized brain regions. The study of brain functional connectivity contributes greatly to the understanding of brain functions and pathology

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.