Abstract

<abstract><p>A susceptible diabetes comorbidity model was used in the mathematical treatment to explain the predominance of mellitus. In the susceptible diabetes comorbidity model, diabetic patients were divided into three groups: susceptible diabetes, uncomplicated diabetics, and complicated diabetics. In this research, we investigate the susceptible diabetes comorbidity model and its intricacy via the Atangana-Baleanu fractional derivative operator in the Caputo sense (ABC). The analysis backs up the idea that the aforesaid fractional order technique plays an important role in predicting whether or not a person will develop diabetes after a substantial immunological assault. Using the fixed point postulates, several theoretic outcomes of existence and Ulam's stability are proposed for the susceptible diabetes comorbidity model. Meanwhile, a mathematical approach is provided for determining the numerical solution of the developed framework employing the Adams type predictor–corrector algorithm for the ABC-fractional integral operator. Numerous mathematical representations correlating to multiple fractional orders are shown. It brings up the prospect of employing this structure to generate framework regulators for glucose metabolism in type 2 diabetes mellitus patients.</p></abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.