Abstract

The complex and dynamic space environment is both exciting and challenging in this NewSpace era. In particular, Low-Earth Orbits are being realigned and reinvented for various purposes using suitable technological advancement. This paper is focused on the major parameters that can be analyzed to attain orbit control and autonomy of small-satellite constellations for real-time applications. By applying industry experience to graduate research, this work addresses the related concerns in a realistic manner. Currently, global small-satellite constellation solutions are too expensive and inaccessible for many nations to help in their data reception requirements. This issue was addressed, and some of the main aspects relating to low-cost and high-benefit technical synthesis, in addition to utilization for deep-space missions, were also discussed in detail. In conclusion, this paper demonstrated a strategic approach to optimize the coverage and performance, and reduce the cost of small-satellite constellations, compared with present day constellations, allowing the data to be relayed faster and with precision. This will benefit the industry in the development of low-cost constellations, and effectively assist in disaster management and deep-space communication relays. Autonomous orbit selection and navigation can be established for better path alignment for satellites to efficiently propagate and deliver the required data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call