Abstract

<div class="section abstract"><div class="htmlview paragraph">In recent years, there has been a need to reduce CO2 emissions from internal combustion engines in order to achieve an energy-saving and low-carbon society. Against this backdrop, the authors have focused attention on Homogeneous Charge Compression Ignition (HCCI) combustion that achieves both high efficiency and clean emissions. With HCCI combustion, a premixed mixture of fuel and air is supplied to the cylinder and autoignited by piston compression to drive the engine. Autoignition makes it possible to operate the engine at a high compression ratio, enabling the HCCI combustion system to attain high efficiency. However, HCCI combustion also has some major unresolved issues. Two principal issues that can be cited are ignition timing control for igniting the mixture at the proper time and assurance of suitable combustion conditions following ignition to prevent incomplete combustion and knocking. The combustion characteristics of a blended fuel of dimethyl ether (DME) as the ignition source and city gas as the main fuel, which have vastly different ignition characteristics, were investigated in experiments conducted with a test engine. The intermediate combustion products of the two fuel components were also investigated and analyzed by conducting chemical kinetic simulations. The results revealed that, combustion of a mixture of DME and city gas was strongly affected by methane, which was the main component of the mixture and slowed down the main combustion, while other alkanes showed a slowing effect on low-temperature oxidation reactions.</div></div>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.