Abstract
The precision of an eye-tracker is critical to the correct identification of eye movements and their properties. To measure a system's precision, artificial eyes (AEs) are often used, to exclude eye movements influencing the measurements. A possible issue, however, is that it is virtually impossible to construct AEs with sufficient complexity to fully represent the human eye. To examine the consequences of this limitation, we tested currently used AEs from three manufacturers of eye-trackers and compared them to a more complex model, using 12 commercial eye-trackers. Because precision can be measured in various ways, we compared different metrics in the spatial domain and analyzed the power-spectral densities in the frequency domain. To assess how precision measurements compare in artificial and human eyes, we also measured precision using human recordings on the same eye-trackers. Our results show that the modified eye model presented can cope with all eye-trackers tested and acts as a promising candidate for further development of a set of AEs with varying pupil size and pupil-iris contrast. The spectral analysis of both the AE and human data revealed that human eye data have different frequencies that likely reflect the physiological characteristics of human eye movements. We also report the effects of sample selection methods for precision calculations. This study is part of the EMRA/COGAIN Eye Data Quality Standardization Project.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.