Abstract
In this study, an inverse microwave scattering model for sea ice has been developed for the purpose of sea ice thickness retrieval using radar backscatter data. The model is loosely based on the Radiative-Transfer-Thermodynamic Inverse Model for Sea Ice Thickness Retrieval from Time-Series Scattering Data. The developed inverse model is a combination of the Radiative Transfer Theory with Dense Medium Phase and Amplitude Correction Theory (RT- DMPACT) forward model and the Levenberg-Marquardt Optimization algorithm. Using input data from ground truth measurements carried out in Ross Island, Antarctica, together with radar backscatter data extracted from purchased satellite images, the sea ice thickness of an area is estimated using the inverse model developed. The estimated sea ice thickness is then compared with the ground truth measurement data to verify its accuracy. The results have shown good promise, with successful estimation of the sea ice thickness within §0:15m of the actual measurement. A theoretical analysis has also revealed that the model faces di-culty once the sea ice thickness exceeds 1.7m. This can be considered in the future development and improvement of the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.