Abstract

We report on the processing, phase stability, and electronic transport properties of indium oxide (In 2O 3) doped with 10 wt.% zinc oxide (ZnO) deposited to a thickness of 100 nm using DC magnetron sputter deposition at room temperature and 350 °C. We compare the optimum oxygen content in the sputter gas for pure In 2O 3 and doped with (i) 10 wt.% ZnO and (ii) 9.8 wt.% SnO 2. Amorphous IZO films were annealed at 200 °C in air and N 2/H 2 and resistivity, Hall mobility, and carrier density along with molar volume change were monitored simultaneously as a function of time at temperature. We report that annealing the amorphous oxide in air at 200 °C does not lead to crystallization but does result in a 0.5% decrease in the amorphous phase molar volume and an associated drop in carrier density. Annealing in forming gas leads to an increase in carrier density and a small decrease in molar volume. We also report that when annealed in air at 500 °C, the amorphous IZO phase may crystallize either in the cubic bixbyite or in a recently observed rhombohedral phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.