Abstract

Following the traditional total variational denoising model in removing medical image noise with blurred image texture details, among other problems, an adaptive medical image fractional-order total variational denoising model with an improved sparrow search algorithm is proposed in this study. This algorithm combines the characteristics of fractional-order differential operators and total variational models. The model preserves the weak texture region of the image improvement based on the unique amplitude-frequency characteristics of the fractional-order differential operator. The order of the fractional-order differential operator is adaptively determined by the improved sparrow search algorithm using both the sine search strategy and the diversity variation processing strategy, which can greatly improve the denoising ability of the fractional-order differential operator. The experimental results reveal that the model not only achieves the adaptivity of fractional-order total variable differential order, but also can effectively remove noise, preserve the texture structure of the image to the maximum extent, and improve the peak signal-to-noise ratio of the image; it also displays favorable prospects for applications in medical image denoising.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call