Abstract

Seam tracking systems for the arc welding process use various kinds of sensor including the arc sensor, vision sensor and laser displacement sensor. Among the various sensors available, the electromagnetic sensor is one of the most useful methods, especially in sheet metal butt-joint arc welding, primarily because it is hardly affected by the intense arc light and fumes generated during the welding process, or by the surface conditions of the weldment such as paint marks and scratches. In this study, a dual-electromagnetic sensor, which utilizes the induced current variation in the sensing coil due to the eddy current variation in the metal near the sensor, was developed for the arc welding of sheet metal I-butt joints. The dual-electromagnetic sensor thus detects the offset displacement of the weld line from the centre of the sensor head, even when there is no gap in the joint. A set of design variables for the sensor was examined to determine the maximum sensing capability through repeated experiments. Seam tracking was performed by correcting the position of the sensor to the amount of offset displacement determined during each sampling period. From the experimental results, the developed sensor system showed an excellent capability for weld seam detection and tracking when the sensor-to-workpiece distance was less than 5mm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call