Abstract

Motorcycles are widely used in people’s daily lives for their convenience. Due to their characteristic of static instability, they have a larger roll angle than cars when turning, which brings the hidden danger of overturning. When a motorcycle is turning and braking simultaneously, the overturn risk rises dramatically. This study presents a novel control system that can ensure stability and braking performance during turning and braking. Given the direct impact of tires on a motorcycle’s behavior, a motorcycle tire model was created via Magic Formula to determine the kinematic parameters that have correlated effects on the longitudinal and lateral characteristics of tires. The slip ratio was defined as the manipulated variable, and a constrained optimization model that aimed to maximize the braking performance and took the stability as the constraint condition was created and solved through the gold section method. The obtained optimal slip ratio was then used as the input for the proposed cornering braking control system that adopted the Fuzzy PID algorithm. Finally, the feasibility of the proposed controller was tested via a co-simulation method, and the simulation results were compared with an ordinary anti-lock braking system. The results demonstrate that the proposed cornering braking control system can take both motorcycle stability and braking performance into consideration at the same time, effectively increasing the security of a motorcycle during braking in a turn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.