Abstract

LDMOS (lateral diffused MOS) is an important class of device finding applications in high voltage and smart power management due to their compatibility with the standard CMOS process. However, high operational drain voltage makes LDMOS devices highly vulnerable to the damage caused by hot-carrier injection (HCI). In this paper, the various layout parameters of NLDMOS with shallow trench isolation (STI) are systematically studied to check HCI performance using 28nm Poly/SiON logic process, including effective channel length (Lc), a drift region and poly gate overlap (Lp), a drift region and Pwell overlap/space (Lw) and STI width (Ls). Extensive TCAD simulations and experiments reveal that small Lp and large Lw overlap can greatly improve NLDMOS substrate current and HCI performance without any additional process step or process modification. The physical mechanism behinds the results should be that the impact ionization has been driven further away from the Si/SiO2 interface with a reduction in magnitude, which can improve substrate current and HCI performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.