Abstract

Purpose – The purpose of this paper is to present the tribological, anticorrosion and antirust properties of three 2,5-dimercapto-1,3,4-thiadiazole (DMTD) derivatives as water-soluble additives in water–glycol hydraulic fluid. Design/methodology/approach – DMTD derivatives possessing excellent corrosion inhibiting and extreme-pressure (EP) properties have long been used as metal passivators and load-carrying additives in lubricating oils and grease. However, there are seldom literatures about DMTD derivatives as water-soluble lubricant additives as yet. In this work, three DMTD derivatives were synthesized and investigated as water-soluble additives in the water–glycol hydraulic fluid. Their tribological properties were evaluated in detail by four-ball wear test machine and Optimol SRV-IV oscillating friction and wear tester. Meanwhile, their anticorrosion and antirust properties were also investigated by copper strip corrosive tests and antirust tests, respectively. The worn surfaces were analyzed by scanning electron microscope and X-ray photonelectron spectroscope, and the EP, antiwear and friction-reducing mechanisms were primarily proposed. Findings – The synthesized three DMTD derivatives (coded as A, B and C) have excellent solubility in the base liquid of the water–glycol hydraulic fluid. The experimental results demonstrated that all these compounds, especially A, could remarkably improve the EP, antiwear and friction-reducing properties of the base liquid. Furthermore, they all have perfect copper corrosion inhibiting and antirust properties with low adding concentration (< 3 weight per cent) in the base liquid and hence could be used as multifunctional additives in the water–glycol hydraulic fluid. Research limitations/implications – This research only focused on the synthesized DMTD derivatives. If possible, some other thiadiazole derivatives also should be investigated. Practical implications – The synthesized DMTD derivatives, especially compound A, can be used as multifunctional water-soluble additives in the water–glycol hydraulic fluid. Originality/value – In this paper, three DMTD derivatives were synthesized and their tribological behaviors as water-soluble lubricant additives were investigated for the first time. In addition, the EP, antiwear and friction-reducing mechanisms were also put forward.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call