Abstract

Cellulose is the most abundant renewable resource which has found a diverse range of applications. Cellulose dissolution is a significant property for manufacturing man-made cellulosic fiber through viscose process. Crystalline microfibrillar structure and relatively high ordered packing of polymeric chains contribute to recalcitrance and poor reactivity of cellulose. One of the most common methods to improve cellulose dissolution is cellulase treatment. Herein, cellulase treatment at different doses was studied to explore the correlation of cellulose dissolution with crystallinity. Pulp showed improvement in Fock reactivity and other properties related to viscose application. But contrary to previous studies, cellulose crystallinity as determined by XRD and FTIR did not correlate with Fock reactivity at a higher dose of cellulase. The results indicated some complex mechanism to be involved between the cellulose dissolution and crystallinity than a simple negative correlation. Cellulase treatment at 150 HCU/g resulted in the upgraded pulp suitable for viscose application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call