Abstract

The common basis of the modeling activities is the numerical solution of the momentum and mass conservation equations in a fluid. For hydrodynamic modeling, the Navier-Stokes equations are usually simplified according to the specific water body properties, obtaining, for example, the shallow water equations, so called because the horizontal scale is much larger than the vertical. Therefore, in cases where the river has a relation width-depth of 20 or more and for many common applications, variations in the vertical velocity are much less important than the transverse and longitudinal direction (Gordon et al., 2004). In this sense, the equations can be averaged to obtain the vertical approach in two dimensions in the horizontal plane, which adequately describes the flow field for most of the rivers with these characteristics. At the same time, the contaminant transport models have evolved from simple analytical equations based on idealized reactors to sophisticated numerical codes to study complex multidimensional systems. Since the introduction of the classic Streeter-Phelps model in the 1920 to evaluate the Biochemical Oxygen Demand and dissolved oxygen in a steady state current, contaminant transport and water quality models have been developed to characterize and assist the analysis of a large number of water quality problems. This chapter presents the numerical solution of the two-dimensional Saint-Venant and Advection-Diffusion-Reaction equations to calculate the free surface flow and contaminant transport, respectively. The solution of both equations is based on a second order EulerianLagrangian method. The advective terms are solved using the Lagrangian scheme, while the Eulerian scheme is used for diffusive terms. The specific application to the Coatzacoalcos River, Mexico is discussed, having as a main building block the water quality assessment supported on mathematical modelling of hydrodynamics and contaminants transport. The solution method here proposed for the two-dimensional equations, yields appropriate results representing the river hydrodynamics and contaminant behaviour and distribution when comparing whit field measurements. In this work is presented the structure of a numerical model giving an overview of the program scope, the conceptual design and the structure for each hydrodynamic, pollutants transport and water quality modules that includes ANAITE/2D model (Torres-Bejarano and Ramirez, 2007). The numerical solution scheme is detailed explained for both Saint-Venant and the Advection-Diffusion-Reaction equation. To validate the model, some comparisons were made between model results and different field measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call