Abstract

AbstractThe focus in this work is on interior-point methods for inequality-constrained quadratic programs, and particularly on the system of nonlinear equations to be solved for each value of the barrier parameter. Newton iterations give high quality solutions, but we are interested in modified Newton systems that are computationally less expensive at the expense of lower quality solutions. We propose a structured modified Newton approach where each modified Jacobian is composed of a previous Jacobian, plus one low-rank update matrix per succeeding iteration. Each update matrix is, for a given rank, chosen such that the distance to the Jacobian at the current iterate is minimized, in both 2-norm and Frobenius norm. The approach is structured in the sense that it preserves the nonzero pattern of the Jacobian. The choice of update matrix is supported by results in an ideal theoretical setting. We also produce numerical results with a basic interior-point implementation to investigate the practical performance within and beyond the theoretical framework. In order to improve performance beyond the theoretical framework, we also motivate and construct two heuristics to be added to the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.