Abstract

Various countermeasures can be introduced to reduce collisions at highway–railway grade crossings. These countermeasures may take different forms, such as passive and (or) active driver warning devices, supplementary traffic controls (four quadrant barriers, wayside horn, closed circuit television (CCTV) monitoring, etc.), illumination, signage and highway speed limit, etc. In this research, we present a structured model that makes use of data mining techniques to estimate the effect of changes in countermeasures on the expected number of collisions at a given crossing. This model serves as a decision-support tool for the evaluation and development of cost-effective and practicable safety program at highway–railway grade crossings. The use of data mining techniques helps to resolve many of the problems associated with conventional statistical models used to predict the expected number of collisions for a given type of crossing. Statistical models introduce biases that limit their ability to fully represent the relationship between selected countermeasures and resultant collisions for a mix of crossing attributes. This paper makes use of Canadian inventory and collision data to illustrate the potential merits of the proposed model to provide decision support.Key words: highway–railway grade crossing, collision prediction model, countermeasures, Poisson regression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.