Abstract

The emission spectra of TeV blazars extend up to tens of TeV, and the emission mechanism of the TeV γ-rays is explained by synchrotron self-Compton scattering in leptonic models. In these models the time variabilities of X-rays and TeV γ-rays are correlated. However, recent observations of 1ES 1959+65.0 and Mrk 421 have found the TeV γ-ray flares, i.e., TeV γ-ray flares without simultaneous X-ray flares. In this paper we propose a model for the orphan TeV γ-ray flares, employing an inhomogeneous leptonic jet model. After a primary flare that accompanies flare-up both in X-rays and TeV γ-rays, radiation propagates in various directions in the comoving frame of the jet. When a dense region in the jet receives the radiation, X-rays are scattered by relativistic electrons/positrons to become TeV γ-rays. These γ-ray photons are observed as an orphan TeV γ-ray flare. The observed delay time between the primary and orphan flares is about 2 weeks, and this is accounted for in our model for parameters such as Γ = 20, d = 4 × 1017 cm, α = 3, and η = 1, where Γ is the bulk Lorentz factor of the jet, d is the distance between the central black hole and the primary flare site, α/Γ is the angle between the jet axis and the direction of the motion of the dense region that scatters incoming X-rays produced by the primary flare, and η/Γ is the angle between the jet axis and the line of sight.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call