Abstract

The structured life-course modeling approach (SLCMA) is a theory-driven analytical method that empirically compares multiple prespecified life-course hypotheses characterizing time-dependent exposure-outcome relationships to determine which theory best fits the observed data. In this study, we performed simulations and empirical analyses to evaluate the performance of the SLCMA when applied to genomewide DNA methylation (DNAm). Using simulations (n=700), we compared 5 statistical inference tests used with SLCMA, assessing the familywise error rate, statistical power, and confidence interval coverage to determine whether inference based on these tests was valid in the presence of substantial multiple testing and small effects-2 hallmark challenges of inference from -omics data. In the empirical analyses (n=703), we evaluated the time-dependent relationship between childhood abuse and genomewide DNAm. In simulations, selective inference and the max-|t|-test performed best: Both controlled the familywise error rate and yielded moderate statistical power. Empirical analyses using SLCMA revealed time-dependent effects of childhood abuse on DNAm. Our findings show that SLCMA, applied and interpreted appropriately, can be used in high-throughput settings to examine time-dependent effects underlying exposure-outcome relationships over the life course. We provide recommendations for applying the SLCMA in -omics settings and encourage researchers to move beyond analyses of exposed versus unexposed individuals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.