Abstract

High-throughput virtual screening for crystals aims to discover new materials by evaluating the property of every virtual candidate in the database exhaustively. During this process, the major computational bottleneck is the costly structural relaxation of each hypothetical material on the large-scale dataset using density functional theory (DFT) calculations. Here, we present a generative domain translation framework that maps the unrelaxed structural domains to the relaxed domains, enabling data-driven structural translations. The model predicts the materials formation energy with a small mean absolute error without DFT relaxations, and furthermore can produce the atomic coordinates consistent with the DFT relaxed structures. The utility of the proposed concept is not restricted to the structural domains, and we expect that it can be extended to translate the domain of easy-to-compute properties into the domain of more difficult properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.