Abstract

SummaryWe introduce a numerical method for the numerical solution of the Lur'e equations, a system of matrix equations that arises, for instance, in linear‐quadratic infinite time horizon optimal control. We focus on small‐scale, dense problems. Via a Cayley transformation, the problem is transformed to the discrete‐time case, and the structural infinite eigenvalues of the associated matrix pencil are deflated. The deflated problem is associated with a symplectic pencil with several Jordan blocks of eigenvalue 1 and even size, which arise from the nontrivial Kronecker chains at infinity of the original problem. For the solution of this modified problem, we use the structure‐preserving doubling algorithm. Implementation issues such as the choice of the parameter γ in the Cayley transform are discussed. The most interesting feature of this method, with respect to the competing approaches, is the absence of arbitrary rank decisions, which may be ill‐posed and numerically troublesome. The numerical examples presented confirm the effectiveness of this method. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.