Abstract

The Helmholtz decomposition of a vector field on potential and solenoidal parts is much more natural from physical and geometric points of view then representations through the components of the vector in the Cartesian coordinate system of Euclidean space. The structure, representation through potentials and detailed decomposition for 2D symmetric m-tensor fields in a case of the Euclidean metric is known. For the Riemannian metrics similar results are known for vector fields. We investigate the properties of the solenoidal vector and 2-tensor two-dimensional fields given in the Riemannian domain with the conformal metric and establish the connections between the fields and metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.