Abstract

Neutral endopeptidase or neprilysin (NEP) cleaves the natriuretic peptides, bradykinin, endothelin, angiotensin II, amyloid β protein, substance P, etc., thus modulating their effects on heart, kidney, and other organs. NEP has a proven role in hypertension, heart disease, renal disease, Alzheimer's, diabetes, and some cancers. NEP inhibitor development has been in focus since the US FDA approved a combination therapy of angiotensin II type 1 receptor inhibitor (valsartan) and NEP inhibitor (sacubitril) for use in heart failure. Considering the importance of NEP inhibitors the present work focuses on the designing of a potential lead for NEP inhibition. A structure-based pharmacophore modelling approach was employed to identify NEP inhibitors from the pool of 1140 chemical entities obtained from the ZINC database. Based on the docking score and pivotal interactions, ten molecules were selected and subjected to binding free energy calculations and ADMET predictions. The top two compounds were studied further by molecular dynamics simulations to determine the stability of the ligand-receptor complex. ZINC0000004684268, a phenylalanine derivative, showed affinity and complex stability comparable to sacubitril. However, in silico studies indicated that it may have poor pharmacokinetic parameters. Therefore, the molecule was optimized using bioisosteric replacements, keeping the phenylalanine moiety intact, to obtain five potential lead molecules with an acceptable pharmacokinetic profile. The works thus open up the scope to further corroborate the present in silico findings with the biological analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call