Abstract

HIV replication requires the nuclear export of essential, intron-containing viral RNAs. To facilitate export, HIV encodes the viral accessory protein Rev which binds unspliced and partially spliced viral RNAs and creates a ribonucleoprotein complex that recruits the cellular Chromosome maintenance factor 1 export machinery. Exporting RNAs in this manner bypasses the necessity for complete splicing as a prerequisite for mRNA export, and allows intron-containing RNAs to reach the cytoplasm intact for translation and virus packaging. Recent structural studies have revealed that this entire complex exhibits remarkable plasticity at many levels of organization, including RNA folding, protein-RNA recognition, multimer formation, and host factor recruitment. In this review, we explore each aspect of plasticity from structural, functional, and possible therapeutic viewpoints. WIREs RNA 2016, 7:470-486. doi: 10.1002/wrna.1342 For further resources related to this article, please visit the WIREs website.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call