Abstract

Properties of superconducting and superfluid thin films, modeled as a two-dimensional classic Coulomb fluid, are connected to the molecular structure of the system. Monte Carlo simulations to explore structural properties and ordering in the classical two-dimensional Coulomb fluid were performed. The density dependence of translational order parameters at various temperatures and cluster distribution below and above the Kosterlitz-Thouless line were studied, and the percolation temperature threshold was determined. Results show that one could detect the insulator-conductor transition by observing the translational order parameters, average cluster number, or mean cluster size besides dielectric constant and dipole moment of the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call