Abstract

Carbon/manganese ferrite (C/MnFe2O4) composite nanofibers were fabricated using electrospinning technique followed by carbonization process under mixed of air and argon atmosphere at 400, 600 and 800°C, respectively. The prepared composite nanofibers were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM) and X-ray absorption spectroscopy (XAS) including X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). After calcination at 800°C, the composite nanofibers of C/MnFe2O4 were obtained with a mean diameter of nanofibers of approximately 700–800nm. The structure of MnFe2O4 was successfully studied using XAS technique and was found to be cubic spinel with a coupling of Mn2/Mn3+ and Fe3+ oxidation states. All composite nanofibers exhibited ferromagnetic behavior especially after being calcined at 800°C. This ferromagnetic properties were related to the distribution of cations over tetrahedral and octahedral sites as revealed by EXAFS results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.